HEAT EXCHANGE BETWEEN PLASMA JET AND
OBSTACLE UNDER UNSTEADY CONDITIONS

V. L. Sergeev and V. P. Veselov UDC 536.244:537.523

A method and the corresponding detectors for measuring large, varying heat fluxes have
been studied. The heat fluxes from a plasma jet to a blunt object near the stagnation point
have been measured under unsteady conditions.

For an arbitrary time variation of the heat flux at a surface, the temperature field of a semiinfinite
object is given by the integral [1]
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Partitioning the time interval under consideration into k subintervals, and assuming that the heat flux is con-
stant over each such subinterval, we find the following equation for the heat flux [1]:
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To determine the time dependence of the heat flux in Eq. (2) we must measure the temperature at some point
of the object at a distance x from the surface. Calculations show that for measurement of heat fluxes on the
order of 1 kW/cem? the solution in (2) is stable for AFoyx = 0.5-1 [2]. When a thermocouple is placed 1-2 mm
from the surface, the first value of the heat flux can be found at a time 0.005-0.01 sec after the heginning of
the process. This time interval is the minimum value of the time intervals into which the curve T = f(1) can
be partitioned in order to find a stable solution.

The detectors used in this method are long copper rods with heat-insulated lateral surfaces. The tem-
perature at the rear end of the rod is monitored by a thermocouple. Near the front end of the rod, between
the rod and the insulation, is an annular contact 0.5-1 mm wide; over the remainder there is an air-filled gap.

Comparison of the method of a semiinfinite object with the method of [3] shows (see Fig. 1 of [4]) that
the two give approximately the same results. To determine the heat fluxes by the second methed it is neces-
sary to measure the rod temperature at four points along its length. For a constant value of the heat flux,
the method of a semiinfinite object agrees within the measurement error (10%-15%) with the exponential
method for measuring heat fluxes (Fig. 2 of [4]). Finally, the test of the method reported below also con-
firms its suitability for measurements (Fig. 2).

To test the applicability of the one-dimensional theory [Eq. (2)] in the case of cylindrical detectors, we
carried out a numerical calculation of the temperature fields for a detector model. We treated versions of the
detector with textolite and copper protective sleeves. For version a (Fig. 1) the heat flux was assumed to be
0.7 or 3 kW/cm?, corresponding to concrete experiments; for version b it was g = 0.55 kW/cm?, and the width
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Fig. 1. Model of the detectors. a) Detector with textolite sleeve;
b) copper sleeve.

of the contact between the detector and the sleeve was 1 or 0.4 mm. On the basis of preliminary calculations
we chose a length of 10 mm for the detector; this is sufficient for simulation of a semiinfinite object over a
time interval of 0.2-0.3 sec.

In accordance with the explicit calculation scheme (whose applicability for a problem of this type was
checked beforehand through a comparison with the analytic solution for a semiinfinite object), the temper-
ature at the interior points of the model detector (Fig. 1) was determined from
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The step along the z direction was chosen to be 0.2 mm, and we chose Ar = 0.5 mm; then the step A7 can be

assumed to be 10™% sec on the basis of the stability condition 0 = [1 = 2(aAT)/(AT) + aAT/(Az)} ] = 1, We as~
sumed ideal thermal contact at the contact between the detector and the sleeve; at the other surfaces, except
the front end, we assumed there was no heat transfer.

Analysis of the temperature fields found shows that in the detector there are radial temperature gra-
dients, which have essentially no effect on the temperature at the axis of the detector in the cases considered
(Fig. 2). Reconstruction of the heat flux on the basis of the temperature at the axis at a distance of 1 mm
from the end, by means of the method of a semiinifinte object, yields values approximately the same as the
original fluxes. In particular, for the case shown in Fig. 2 the heat flux in the numerical calculation was
assumed to be 3 kW/cm?, which is in good agreement with the calculated values of g (points 9). It also fol-
lows from this chart that there are no significant radial heat fluxes in the detectors used, so that they are
suitable for measurements.

Measurement of the heat fluxes in the initial stage of the heating of a blunt object near the stagnation
point in a plasma jet [2, 4] showed that the heat fluxes usually increase from zero to a steady-state value
(Figs. 2 and 3), which is governed by the properties of the gas flow and by the shape of the object [5]:

g = 4.5-10~R=05p} 23(py— p) #5(hy—h). @

In some cases the heat fluxes were constant, beginning with the first value found. The behavior of the heat
flux does not depend on the nature of the gas [6] (air or argon) or the properties of the gas flow [6] (Figs. 2
and 3). The heat flux is the same if the detector is in a coaxial arrangement with the nozzle before the ap-
pearance of the plasma jet or if the detector is inserted into the jet after the apparatus has been turned on [6].

_ This analysis of the temperature fields in the detector showed that the observed increase in g during
the initial stage cannot be attributed to heat fluxes across the contact between the detector and the protective
gleeve. The change in the heat flux was caused by external factors.

The problem of the flow of a gas with constant properties around a blunt object, with unsteady heat ex-
change, can be formulated as follows [7]: .
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Neglecting the second term of the energy equation near the stagnation point, where the velocily components
vanish, we reduce the heat-transfer problem to a heat-conduction problem in order to study the nature of the
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Fig. 2. Characteristics of the heating of a detector with a spherical textolite pro-
tective sleeve by a plasma jet. ggp =3 kW/cm?; N = 147 kW, G =7 g/sec (air).
1~-5) Temperature at the axis at several distances from the front end; 1,4,5) 1 mm;
2) 5 mm; 3) 30 mm; 1,2,3) experimental; 4) calculated for a semiinfinite object
with g = 3 kW/cm?; 5) numerical calculation for a detector model with g = 3 kW/cm?;
6-9) q =1 (1); 6) AT =0.05 sec with respect to curve 1; 7) At = 0,025 sec, curve 1;
8) At =0.1 sec, curve 2; 9) At = 0.025 sec, curve 5. The temperature t is in
degrees Celsius,
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Fig. 3. Characteristics of the heating of a plane detector by a plasma jet immedi-
ately after the apparatus is turned on. N =51 kW, G =1.55 g/sec (nitrogen}. The
distance from the nozzle to the detector is L =10 mm. 1) g = f(1) with A7 = 0.01 sec;
2) 0.05 sec; 3) Apy = f(7).

change in the heat flux at the surface. For arbitrary variations of the temperatures of the surface and the
liquid at a distance § from the surface, we find [8}
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The first factor in the denominator increases as time elapses, while the second decreases. The heat-transfer
coefficient and the heat flux can thus either increase or decrease as time elapses. An estimate of the behavior
of q for the heat-transfer conditions prevailing in the plasma jet (the thickness 6 is assumed to be 2.4/ v/28
[9]) reveals a decrease of the heat flux as time elapses.

A decrease in heat flux over time is also predicted by a numerical solution [8} of the energy equation with
the following temperature dependence for the gas properties:
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where p = C/h; s=j?»dt’ =A,+ Ak h= jcpdf; C, Ay, and A are constants; and the temperature of the liquid
0 0

changes in a step manner.

The scale time for the heating of the gas layer adjacent to the object was estimated on the basis of the
heat-conduction problem for a plate in contact with a semiinfinite object [8]. The thickness of the plate
simulating the boundary layer was determined from the equation given above [9]. The calculated results for
velocities of 100 and 1000 m/sec are 0.7-10~% and 0.7-107% sec, respectively. The scale time for the forma~
tion of the thermal boundary layer according to the data of [7] is 0.5°10-% or 0.5-10~° sec for these velocities;
according to the data of [10], this time is 1.8°10~* or 1.8-107 sec. These values are well below the experi-
mental values of the time interval over which the heat flux changes, i.e., 0.1-0.2 sec (Figs. 2 and 3).
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The changes in the heat flux observed experimentally during the initial stage of the heating therefore
cannot be explained on the basis of unsteady thermal processes in the boundary layer. In each case there can
be particular factors governing the change in the heat flux,

The measurements showed that when the detector is inserted into the jet the scale time for the change
in the heat flux is the same ag the time corresponding to radial motion of the sensitive element in the jet. The
position of the detector was determined with a loop oscillograph. When a shield was used over the time re-
quired to insert the detector and then removed in less than 0,01 sec, the rising part of the g = f(7) curve
vanished, and the heat flux was constant from the first value.

If the apparatus was turned on with the detector already in place, the heat flux "followed" the change in
the pressure, which was not established instantaneously, according to measurements of the pressure in the
discharge chamber (Fig. 3). This relationship was found not only in the initial stage of the heating but also
upon the appearance of pressure fluctuations in the steady-state flow of the plasma jet (Fig. 4). The strain
gauge used as a pressure gauge in these experiments was capable of measuring the pressure at a frequency
of 200 Hz. Accordingly, in several cases the change in the heat flux can be attributed to a change in the stag-
nation pressure.

To compare the heat fluxes under steady and unsteady conditions, we carried out experiments in which
we measured q while the heat-flux detector was moved along the plasma jet. We first used the exponential
method to measure the steady-state heat fluxes at various distances from the end of the nozzle. The heat
fluxes were found to fall off with increasing distance from the nozzle; the change in the steady-state heat flux
during the motion of the detector was 2 kW/cm?, while the velocity was 1.6 m/sec. From these values we
conclude that there was a change in the heat flux to the detector at a rate of about 55 &kW/cm?)/sec. This
change was due to changes in the enthalpy, the pressure, and the velocity gradient near the stagnation point
along the jet.

Measurements of the heat flux with this detector under these conditions of unsteady heat fluxes showed
that the heat fluxes found under steady and unsteady conditions agree well. Accordingly, the processes leading
to the restructuring of the boundary layer do not substantially affect the measurements of the heat fluxes for the
rates of change of the external conditions prevailing in the present experiments.
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DIFFERENTIAL FORM OF THE UNIVERSAL EQUATION
OF THE LAMINAR BOUNDARY LAYER

N. G. Khislavskaya UDC 532.526.2

We propose a new approach to composing a universal equation of the laminar boundary layer
in generalized similarity variables.,

§1. The wide use of electronicdigital calculatorshas greatly reduced interest in approximate methods of; of
computation. However, the problem of establishing general rules to describe the effect of factors external to
the boundary layer (such as the velocity distribution at the outer boundary, blowing or suction velocities,
body surface temperatures, external magnetic field stresses,etc.) on terminal characteristics (friction stress,
heat-transfer coefficient, flow separation location, etc.) continues to be one of practical and fundamental signif-
icance. These rules express general tendencies of various processes such as flow drag, heat transfer, and
related motions in boundary layers.

The "generalized similarity method, " proposed in [1] by Loitsyanskii, makes it possible to examine
broad classes of problems of boundary-layer theory by transforming the boundary-layer equation to a "uni-
versal" generalized-similarity form requiring only a single numerical integration. The resulting tables of
solutions, prepared once and for all, express general rules and relationships among the basic characteristics
of the boundary layer.

§2. Inits initialform the generalized similarity method was first published in {1]. Its distinguishing
feature was that its basic universal equation was of integrodifferential form,in which differential and integral
functionals of the unknown solution were present. In the rather simple cases treated in that paper only minor
complications were encountered in numerically integrating the fundamental equation. Results of the integra-
tion and a corresponding bibliography can be found in [2].

The attempt to apply the method to more involved cases (nonstationary boundary layer, jets and wakes
in arbitrary pressure fields, etc.) showed that by reducing the universal equations to purely differential form
one could, in spite of the introduction thereby of an increase in the number of independent variables, signifi-
cantly simplify the form of the universal equation and aid in effecting the first stage of the method, namely,
that of deriving general rules. In the present paper we develop the basic notion involved in the transition of
the universal equation from an integrodifferential form to one of purely differential form, and we apply it to a
physically realistic and sufficiently general example of a two-dimensional high-speed boundary layer in a
homogeneous incompressible fluid; generalization of the notion to more involved motions is then perfectly
straightforward.

§3. Asadirect substitution of an affinely similar form of the stream function ¢ = Udy(y/8) into the
general Prandtl equation reveals, there appears in the equation a particular pair of conjugate parameters:
f1 =U'z, f; =Uz' which are explicit functions of x [U(x) is the speed at the outer edge of the boundary layer;
z =8%/v; 6 is a conditional "thickness" of the boundary layer; and the primes indicate differentiation with
respect to x|, thereby violating the universality of the new form of the equation. Introduction of these param-
eters into a number of the independent fby virtue of the arbitrariness of U(x)] variables, i.e., a transition
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